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The Integral Analog of the Leibniz Rule 

By Thomas J. Osler 

Abstract. This paper demonstrates that the classical Leibniz rule for the derivative of 
the product of two functions 

DNuv =E (N) DN-kuDkV 
k=o k 

has the integral analog 

Dacuv==f( -awuD wv dw. 

The derivatives occurring are "fractional derivatives." Various generalizations of the inte- 
gral are given, and their relationship to Parseval's formula from the theory of Fourier 
integrals is revealed. Finally, several definite integrals are evaluated using our results. 

1. Introduction. The derivative of the function f(z) with respect to g(z) of 
arbitrary (real or complex) order a is denoted by Dc(J)(z), and called a "fractional 
derivative". It is a generalization of the familiar derivative daf(z)/(dg(z))a to values 
of a which are not natural numbers. In previous papers (see [3]-[9]), the author 
discussed extensions to fractional derivatives of certain rules and formulas for ordinary 
derivatives familiar from the elementary calculus. This paper continues the previous 
study and presents integral analogs of the familiar Leibniz rule for the derivative 
of a product 

D u(z)v(z) = (k)D u(z)D v(z). 

We present below continually more complex extensions of the Leibniz rule. 
Case 1. The simplest integral analog of the Leibniz rule is 

0 \ 

( 1 . 1 ) D2t~u(z)v(z) 
a 

Da_ @ u(z) D"v(z) dco, 
co co 

where (,) = F(a + l)F(a -co + ?1)P(co + 1), and a is any real or complex number. 
Notice that we integrate over the order of the derivatives. 

Case 2. (1.1) can be generalized to the case where we differentiate with respect 
to an arbitrary function g(z), and co is replaced by co + y, where -y is arbitrary (real 
or complex). 
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(1.2) D (ZVu(z)v(z) = f (a + ,) Da- Vlu(z) Dw fv(z) dw. 

Case 3. The product u(&)v(v) can be replaced by an arbitrary function of two 
variables f(t, t): 

(1.3) =f f 
a e) Da- 7 f(Q, t) Ie=z;t=z do, 

where DZ'b is a generalization of the "partial derivative" operator &a+bj(&Z)a(&W) 

Case 4. Our most general integral form of the Leibniz rule is 

(1.4) D,(z)f(z, z) a I(co) dco, 

where 

I(a)) - ( +)a D a- w-'y, W +Y [fQ( t)6g(tj(; z)qQ(t)"+'&(> Y1] (h=z;l=z d , 

and where 0(v; z) = (g() - g(z))q(v). The three previous integrals are all special 
cases of (1.4). The author's series form of the Leibniz rule [7] 

(1.5) D'(z)f(z, z) - E I(an)a 
n=-co 

suggests the validity of (1.4) by letting a -o 0 (in which case a becomes dco, an becomes 
co, and E becomes j). If f(t, g- (0)) = 0, (1.4) assumes the simpler form 

a rO z ac A a @ .+rfQt, qQ() lw+'l 
(1.6) D' z)f(z, z) = f ( + ) D( W+Y[a) __ 

- 
dw. 

In previous papers [5], [7], [8], the author demonstrated that formulas familiar 
from Fourier analysis are closely related to formulas involving fractional derivatives. 
In this paper, we show that the familiar Parseval's integral formula [11, p. 50] is, 
in a certain sense, a special case of our integral analog of the Leibniz rule (1.4). 

A proof of (1.4) is presented, and the region in the z-plane in which the integral 
converges is revealed. 

Finally, several examples of (1.4) are given for specific functions f(t, t), g(z) 
and q(v). A table of definite integrals (Table 5.2) emerges. 

2. Fractional Derivatives. In a previous paper [3], the author explored the 
definitions of the fractional derivatives of a function in detail. In this section, we 
merely review the definitions so as to make the paper self-contained. We assume 
that the reader is familiar with the motivation provided in [3]. 

The most common definition for the fractional derivative of order a found in 
the literature is the "Riemann-Liouville integral" 

D'f(z) = F(-a)-l f(t)(z - t)-y-l dt, 

where Re(a) < 0. The concept of a fractional derivative with respect to an arbitrary 
function g(z), Da(z)f(z), was apparently introduced for the first time in the author's 
paper [3], while the idea appeared earlier for certain specific functions. The most 
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convenient form of the definition for our purposes is given through a generalization 
of Cauchy's integral formula. 

Definition 2.1. Let f(z) be analytic in the simply connected region R. Let g(z) 
be regular and univalent on R, and let g- l(0) be an interior or boundary point of R. 
Assume also that f c f(z)g'(z) dz = 0 for any simple closed contour C in R K) { g- l(0) I 
through g- l(0). Then if a is not a negative integer, and z is in R, we define the frac- 
tional derivative of order a of the function f(z) with respect to g(z) to be 

(2.1) = z 2-z(O) (g(O) = 

For nonintegral a, the integrand has a branch line which begins at v = z and passes 
through v = g-'(0). The limits of integration imply that the contour of integration 
starts at g-'(0), encloses z once in the positive sense, and returns to g '(0) without 
cutting the branch line or leaving R ) {Ig-'(0)}. 

If a is a negative integer -N, IP(a + 1) = o while the integral in (2.1) vanishes. 
If we interpret (2.1) as the limit as a approaches -N, it then defines the derivative 
of order - N, or perhaps we should say the "Nth iterated integral of f(z) with respect 
to g(z)". 

It is important to notice that with the restrictions on g(z) as given in Definition 
2.1, the substitution w = g(z) maintains the equality Daf(w) = Da(z)f(g(z)). 

It is particularly interesting to set g(z) = z - a, for we find that 

(2.2) D-af(Z) = ( + ) (z -z) a I dD. 

While ordinary derivatives with respect to z and z -a are equal, (2.2) shows that 
this is not the case for fractional derivatives, since the value of the contour integral 
depends on the point v = a at which the contour crosses the branch line. 

We also require fractional partial derivatives. 
Definition 2.2. Let f(z, w) be an analytic function of two variables for z and w 

in the simply connected region R. Let g(z) be regular and univalent on R, and let g- l(0) 
be an interior or boundary point of R. Assume also that f c f(z, w)g'(w) dw = 0 and 
f c Do(wj(z w)g'(z) dz = 0 for any simple closed contour C in R U fg- l(O)} through 
g- l(0). Then if a and : are not negative integers, and z and w are in R we write 

D(z), (w)f(z, w) = D a(z) [D (W)f(Z, w)] 

(2.3) _ IP(a + I)P(f + 1) (z+) g'(O ) (w+) f(-, t)g'() di dD 

- J 0) (g) - g(z))? J (0) (g()- g(w)) 

Note. The expression (g(v) - g(z))a+l = exp[(a + 1) ln(g(v) - g(z))] appearing 
in the above definitions is in general a multiple-valued function. To remove this 
uncertainty, select a branch cut which starts at v = z and passes through v = g- l(0) 
in the c-plane. Then let ln(g(v) - g(z)) assume values which are continuous and 
single-valued on the cut c-plane and let ln(g(v) - g(z)) be real when g(v) - g(z) is 
positive. 

3. Connection with Fourier Analysis. In this section, we show that the special 
case of our integral analog of the Leibniz rule (1.1) is formally a generalization of 
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the Parseval's formula [11, p. 50] familiar from the study of Fourier integrals. 
Consider the definition of fractional derivatives (2.2), with a = 0. Take the contour 

of integration to be the circle parametrized by the variable "t": 

(3.1) = z + ze", where -Xr < t < 7r. 

We obtain at once 

za'D'Of (z) 1 r 

dt (3.2) z(f ? 1) - Jf(z + ze)e dt. 

If we set 

f[t] = f(z + ze"t) for -X < t < , 

= 0 otherwise, 

and denote the Fourier transform of f[t] by 

(3.3) f*(a) = 2 f f[t]ettt dt, 

we see that (3.2) becomes 

(3.4) zaD0f(z)/rP(a + 1) = f*(a). 

Thus, we see that the fractional derivative D'f(z) (modulo a multiplicative factor) 
is in a certain sense a generalization of the Fourier transform. By varying z, the 
circle (3.1) changes and, thus, the function f[t] changes. We say that we have "extended 
the Fourier integral into the complex z-plane". 

Now, consider (1.1) written in the form 
ZD'u(z)v(z) _ zaw Daw u(z) zwD v(z) 

F(a+ 1) JP (a- co?+ )P(co + ?) 

Using (3.2), we get 

j f u(z + zei )e- 
t 

V(Z + zet ) dt 
(3.5) 

2r 

Jf {Tr f u(z + ze?t)e eta%w 
t dt ] v(z + zeit)et dt} dco. 

Using the notation 

u[t] = u(z + zeC)e-Ct for - 7r < t < 7r, 

= 0 otherwise, 

v[t] = v(z + zeit) for - 7r < t < 7r, 

= 0 otherwise, 

and the notation (3.3) for Fourier transforms, we convert (3.5) into 

(3.6) 2 f u[t]v[t] dt = f u*(-co)v*(co) dco. 
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(3.6) is the Parseval's formula [11, p. 50]. Thus, our integral analog of the Leibniz 
rule "extends the Parseval's formula into the complex z-plane". 

We conclude this section by reviewing three connections observed in previous 
papers between formulas from Fourier analysis, and new formulas involving frac- 
tional derivatives. 

1. The familiar Fourier series 
0) 

f[t] E fneiant n = -co1 
is (in a sense similar to that above) a special case of the generalized Taylor's series [5] 

f(z) aD an1,yf(Z) ( 

n=cP P(an + y + (- 

2. The series form of the Parseval's relation 

a r/a r 7r/a 7r/a a J u[t]v[t] dt = 21 J U[t]eiant dt a J V[t]e-iant dt, 27r _7r/a n = -co, 27r _7r/a 27r _ r/a 
is a special case of the series form of the Leibniz rule [7] 

D2au(Z)v(Z) = a a( D aan-yu(z) D n+yV(Z). 
n -co (an + ) 

3. The Fourier integral theorem 

f[t] = f r ff[m e`t deiewt do 

is a special case of the integral analog of Taylor's series [8] 

f 'Z) 
z - 

b(+7 (Z - zjw +' dco. IP(co + 'y + 1 ) 

We now leave our discussion of Fourier analysis, and present a rigorous deri- 
vation of our integral analog of the Leibniz rule. 

4. Rigorous Derivations. In the previous section, we saw that our integral 
analog of the Leibniz rule is formally related to the integral form of Parseval's re- 
lation from the theory of Fourier transforms. It would seem natural then that a 
rigorous derivation would follow from known results on Fourier integrals. While 
this is easily achieved for functions f(z, w) of a particular class, a derivation by this 
method sufficient to cover all f(z, w) of interest has escaped the author. It appears 
our integral form of the Leibniz rule is more difficult to prove than the series form 
(1.5). In particular, it is necessary to restrict f(z, w) in the following Theorem 4.1 
(see (i)) to a narrower class of functions than was necessary for the series form of 
the Leibniz rule in which onty the growth of f at the origin was restricted by If(z, w)l < 
M|zP IzlQ, for P, Q, and P + Q in the interval (-1, o) [9]. 

THEOREM 4.1. (i) Let f(t, P) = SP QF(t, t), where Re(P), Re(Q), and Re(P + Q) 
are in the interval (- 1, o ), and let F(t, t) be analytic for t and v in the simply con- 
nected open subset of the complex plane R, which contains the origin. 
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(ii) Let 0(v; z) = -z)q(v) be a given univalent analytic function of v on R such 
that q(v) is never zero on R. 

(iii) Assume that the curves C(z) = { | I0(?; z)I = I0(0; z) } are simple and closed 
for each z such that C(z) C R. 

(iv) Call S = {z C(z) C R}. 
Then for z E S, and all real or complex a and -y, the integral analog of the Leibniz 

rule is 

(4.1) D 'f(z, z) = I(co) dco, 

where 

l((,) ( Da,7c WY [f( , t)0 (f ; z)q(Q)w+ q(?) w_ ] It=z;r=z 

and 0r(v; z) = d0(v; z)/dD. 
Remark. 

( a 
a) = P(a ? ()/a(a - c - ? + )(c + ? 1) 

is, in general, undefined when a is a negative integer. In this case, dividing both 
sides of (4.1) by F(a + 1) produces a valid expression. 

Proof. The C(z) are the curves in the complex c-plane which pass through the 
origin, over which the amplitude of 0(v; z) is constant. For example, if 0(v; z) = 

- z, then C(z) is the circle centered at v = z passing through the origin. By re- 

stricting z to S (described in (iv)), we insure that the curves C(z) are contained in 
the region R on which f(Q, r) is sufficiently regular for the manipulations which follow. 

Using Definition 2.2 of fractional differentiation, we can express I(CO) as 

( ()= + 1) f(z?) r (z) f, )0 (D; z)q(Q) +Wq(v)-@-YW- dD dS 
2 (2irj)2 JO Jo ( - Z)' ( -_ ++ 

and since 0(v; z) = q(v)(D - z) and f(, t) = t Q, ), we get 

((a + 1) t(z+) 
(z?+) 

(PvQ )q(q)a+10 (t; z)0 (?; z) dt di 

(2ri) J J 0(; z)?_ l - + 10(; z)? +? + 1 O; z) 

Make the substitutions 

(4.3) t -z = 0(D, z), s -z = 0(; z) 

and call b = z + 0(0; z). Since 0(t; z) is a univalent function of i, we have 

(4.4) SP)QF q(q)a+l = (s - z)P(t - z)Q a(s, t), 

0tQ; z) 

where 0EQ; z) is not zero and, thus, a(s, t) is an analytic function. The curve C(z) 
has now become the circle t - zl = 0(0; z)I = lb - zI in the t-plane, and Is - z = 

lb- zl in the s-plane. Thus, if z C S, then a(s, t) is analytic for s and t inside and 
on t - zl = lb - zl and s - zl = lb - zl and so 

(4.5) a(s, t) = E E amn(s - z)m(t - z) 
m=O n=O 



THE INTEGRAL ANALOG OF THE LEIBNIZ RULE 909 

where the series converges absolutely and uniformly inside and on the circles just 
mentioned. Thus, (4.2) becomes 

r(a + 1) f(z+) (z+) (5- b)P(t b)Q53(s, t) dt ds 
(27ri)2 b J6 (s - - )w+Y+l 

Substituting the series for 5F, (4.5), into this last integral, we can then integrate term- 
wise since we have a uniformly convergent series times an integrable factor. We get 

co r , _(a ++(?)amn _? 
m,n=O rn o ? 1)FP(w ? y-n 

(a -o - - m + z1) (+) (s- b)P ds 

27ri b (s - 

F( + y - n + I (z ) (t- b)Q dt 

27ri b+(t _ Z)Y+y-n+l 

It is well known that [6, p. 647] 

( P(B 1) r(z+) (s - b)P ds _ P(P + 1)(z - b)P-B 

(4.6) D.j ~ -)+ b~(Z -b)p (- ?1 

and, thus, we get 

(4.7) (cW) = 5 AmnG(w? + m)H(w - n) m,n=o 
where 

Amn = F(a + 1)P(P + 1)1'(Q + 1)amn(z - b)P+Qa+m+n, 

G(w ? m) = r-Fa - - co - m + 1)F(P ?x + y + c? + m + I 

H(o- n) = 1 
P (y + c - n + I)P(Q - - c + n + 1) 

Assume for the moment that we can integrate (4.7) term by term (we will prove this 
later) to get 

(4.8) I(co) dco = Amn f G(co + m)H(o - n) dco. co m,n=o co 

From [1, Vol. 2, p. 300, (21)], we get 

co 
J G(co + m)H( o- n) dco 

_co 

F(P + Q + 1) 
P(P + 1)P(Q + 1)P(a - m - n + 1)P(P + Q - a + m + n + 1) 

and, thus, (4.8) becomes 

(4.9) P I(w) dw= P F(a + 1)F(P + Q + 1)amn(Z - b)P+Qa +m+n 
00 ~ m,n=O F(a - mn- n ? 1)F'(P ? Q - a ? mn ? n ?1 
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Using (4.6), we can write (4.9) as 
c 

I()od a r(a? + 1) -z ) (s b)P+Q ds 
i~w~ dw = amnF( (? -co m,n=O 2ri -( _ Z) 

We can interchange summation and integration 

(o) do= r( + (z) (s - b) amn(S - Z) ds, 

-c 2iri (S - Z) m,n=O 

since we have an integrable factor times a uniformly convergent power series. Using 
(4.5), we get 

coI( )d r(a? 1) (z ) (s - b)P+Q3:(s, s) ds 
o Ia 27r i b (s - 

Z)o1+1 

and using (4.3) and (4.4), we can rewrite this as 

I (co) d r(a ? 1) f (z+) f Q)q(Q)a+l6(t; z) di 
I(o) dw = 27ri Jo 6O(; Z)Y+106 (; z) 

=Fr( + 1) (z - Z) = D2af(z, z). 

Thus, the theorem is proved as soon as we verify the term by term integration in 
(4.8). 

We know that (4.8) is correct provided 

(4.10) E I Amn1 f_ G(co + m)H(co - n)j dco 

converges [10, p. 45]. It is well known that F(a - i)-)r(Pw + b)-1 is an entire 
function of co and that [2, Vol. 1, p. 33, (11)] 

1 
r(a - w + 1)F( + b) 

rF( - a) sin 7r(w - a) -a-b 

r(c + b)r sn 7r(c- a)A(o)/r 

where A(o) -*1 as c >+ c; and 

r(i - c- b) sin 7r(b + co) = 
(_)-a-b 

sin (w + b)B(w)/ir 
r(a -o w 1)ir 

where B(o) -> 1 as w- co 

Thus, 

(4.11) G(w + m) = A1(o)o@ 1 

and 

(4.12) H(w - n) = B (o)o 

where Ai(o) and B1(w) are bounded as w -- ? OD. Let 
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(4.13) r = P + Q + 2. 

Since by hypothesis, -1 < P + Q, we know that 1 < r. From (4.11) and (4.12), 
we have 

I G(w + m)j E Lr/(P+l)(Co ,co) and IH(w - n)I E Lr/(Q 1) (_ co , co). 

Thus, we may apply Hblder's inequality [10, p. 382] and obtain 
00 

J jG(w + m)H(w - n)| dw 

(4.14) 0 r (P+1)/r 0 r, (Q+1)/r 

< {f IG(w + m)lr/(P+l) d} {f IH( - n)Ir/(Q+l) d( 

since (P + 1)/r + (Q + 1)/r = 1 by (4.13). But the R.H.S. of (4.14) is independent 
of m and n (since we can replace w by w - m in G and by w + n in H), and we denote 
it by the constant M. Thus, combining (4.10) and (4.14), we get 

E Amnl IGHI dw < M E lAmnI 
m,n =O 0-c m,n = 

and this last series converges. Thus, (4.8) is verified and the theorem is proved. 
We complete our rigorous derivations by extending the Leibniz rule to the case 

in which we differentiate with respect to an arbitrary function g(z). The proof of the 
following Corollary 4.1 follows from the integral analog of the Leibniz rule (4.1) 
in exactly the same way as the corresponding result [7, Corollary 4.2] follows from 
the series form of the Leibniz rule. Thus, we omit the proof. 

COROLLARY 4.1. Assume the hypothesis of Theorem 4.1 and the additional con- 
ditions 

(i) g(z) is regular and univalent for z E g-'(R), 
(ii) f * ) = f(g(Q), g()), 
(iii) 0,(,; z) = 6(g(Q); g(z)) = (gQ) g(z))q,) ), 
(iv) q(g(Q)) q=Q) 

Then, 

D(z) f*(Z, z) = if ( + ) 
(4.15) 

g (ct)-, +[ gt M d0*( q Q)' (t+' q(v-@-z- t1] dw 

for z E g-'(S), and all a and y for which (,+ ,,) is defined. 
If, in addition, we have 
(v)f ( g-'(0)) = 0, 

then (4.15) can be simplified to 

(4.16) DLD(z)f*(z, Z) = + a) 

Dfa, 0- y-C0+ y-l [q*t (.)]X+ dw. 
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Having completed our rigorous analysis, we now turn to the evaluation of definite 
integrals which are obtained from (4.15). 

5. Examples. In this section, we give several examples of definite integrals 
obtained from (1.4) by selecting specific functions for f(Q, D), q(v), g(z) and specifying 
the parameters a and -y. Table 5.1 lists our choices for f, q, g, a, -y and Table 5.2 
shows the resulting definite integrals. In computing the fractional derivatives in 
(1.4), use was made of the extensive table of Riemann-Liouville integrals found in 
[1, Vol. 2, pp. 181-200]. The notation used for the special functions is that of Erdelyi 
et al. [1]. 

Attention is called to the various restrictions appearing in Table 5.2. These are 
sometimes too strong. For example, it is well known that integral 8 requires only 
3 < Re(A + B + C + D). The other two restrictions are not needed for the validity 
of the integral. They emerge from item (i) of the hypothesis of Theorem 4.1 in which 
we require - 1 < Re(P) and - 1 < Re(Q) so that D':'fQ, ) is defined. Since Table 
5.2 is provided to illustrate our integral form of the Leibniz rule, all restrictions 
emerging from the theorems of this paper are listed. 

From the series form of the Leibniz rule (1.5), we see that in each integral in 
Table 5.2 we can replace "w" by "an" and "fr ... dw" by 4 E coO ... a" to 
obtain a valid expression. Series forms of integrals 1 through 13 were given in [7]. 

TABLE 5.1 Choices for functions and parameters in the integral analog of the Leibniz 
rule (1.4) from which the definite integrals in Table 5.2 are derived. 

No. f(Q, P) q() g(z) a y 

1 vB 1( )IA 1 z B - C -y 

2 eYtA 1 z A-B A- C 
3 (cos 2)/ 1 2-B 

4 (cosh 2)/ 1 2 B 
5 (sin )/D 1 Z2 V B 
6 (sinh )/ 1 2V B 
7 (1-) 1 12-z v + -y 

8 iB+C-2 A+D-2 1 z A + C -2 A- 1 
9 _)-e?B-1(1 _ 1 z b + B- d- D B- D 
10 + l)-E 1 z C - A C -I 
it A-1 B 

vk + Pk z a 

12 tA-1 B exp(Q k) z a -y 

13 AB 1rFs(ai, , a,; 1 z a y 
bl, .. , b.; A) 

14 et+ b+c-2.a+d-2 1 z a+ b-2 a-i 

15 t (S + ak)A?q(Qk + ak)B 1 Z ay 
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TABLE 5.2 Definite integrals obtained from the integral analog of the Leibniz rule; 

No. Definite integral 

17r 2F1(A, B; C; z) 
P(C)P(B - C + 1) 

= sin((w + y + C- B)ir) 2F1(A, B; B- - w; z) 
Jco (w + y + C- B)F(w + y + 1)F(B -y -w) 

Re(z) < -, 0 < Re(B). 

2 r 1F1(A; B; z) f0 sin((w + B- C)ir) 1F1(A; C-w; z) 
F(B)F(A - B + 1) J_(w + B- C)(w + A - C + 1)F(C- w) 

Re(A) > 0. 

3 3~~ V ( _______2 (w+ B1-) YB(Z) 1 dw, , r( 2) oZ) J,. (w + v - B)r(w - B + 2) (2/ 

through 

6 

where 5Fv = Jv, lv, Hv and Lv, respectively, for series 3, 4, 5 and 6. 

7rPA(z) 
co sin((w + y - -7r) 

7 =, 
F(v+u+1) J_ 0 ( + -v 0 

Pv +' (Z) _ -ZA ( @+ 7 -v^-A)/2 

rP(w + 'Y + 1)1+ zJd 

-1 < Re(v), 0 < Re(z). 

8 r(A + B + C + D - 3) 
P(A + C - 1)F(A + D- 1)F(B + C - 1)F(B + D - 1) 

Jo rF(w + A)F(w + B)P(C - w)F(D - w) dw, 

1 < Re(B + C), 1 < Re(A + D), 3 < Re(A + B + C + D). 

9 rPF(b + B - 1) 9F,(e + E, b + B - 1; d + D - 1; z) 
F(d + D- 1)F(b + B- d- D + l)F(b)F(B) 

= 2 F1(e, b; d + W; z) 2F1(E, B; D - w; z) dw 
J_ F( + B- D + I)(co + d)F(b - d -c + I)F(D -) 

0 < Re(b), 0 < Re(B), 2 > Re(z), 1 < Re(b + B). 
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TABLE 5.2 (continued) 

No. Definite integral 

F(C+D- A-B-1) 3F2FE, (C+D- A-B-1)/2, (C+D- A-B)/2; _z2] 

L (D-B)/2, (D-B+ 1)/2 
1P (C - A)P(C - B)P(D - A)P(D - B) 

FE, C- B, D - A; _Z2 

3F2 
co D +w, 1-B- d 

Jc F(w + C)rF(w + D)F(1- A-w)F(- B _w) 

O < Re(D- A), O < Re(C- B), 1 < Re(C + D- A -B). 

11 FP(A + B) 

F(A + B - a)F(a + I)F(A)F(B + 1) 

klFk 0 ' I A}k; zl/Pk F w + y, {B} k; _Zk/Pk] do 

L{w? + A +?,y lk - kt{ B - w y +l k 

f1 F(w+y+ 1)F(w+ A+y-a)F(a-y-w+ 1)F(B-y-w+ 1) 

-1 < Re(A), 0 < Re(B), k = 1, 2, 3, 

12 F(A + B) 
F(A + B- a)F(a + I)F(A)F(B + 1) 

kFk {B} k; (w + y)zk 1 F { A} k; (w + )zk 1 dw 

= 
0 JB - w y + 1I k { @ + A +ky F akk- 

FP(w+ A+y-a)F(w+y+ l)F(a-y-w+ 1)F(B-y-w+ 1),* 

-1 < Re(A), 0 < Re(B), k = 1, 2, 3, 

P(A + B) r+lF8?1F A + B, a1, * ar;z] 
LA + B- a, bl, bs 

1 P(A + B - a)r(a + I)F(A + I)F(B) 

B, a1, , ar;z 

co 
_B-y - , bl, *,bs_ 

= F (w+y+ 1)F(w+ A -a+y+ 1)F(a-y-w+ 1)Fr(B-y-) dws, 

-1 < Re(A), 0 < Re(B). 

* The notation {A}k stands for the set of k parameters A/k, (A + 1)/k, (A + 2)/k, 
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TABLE 5.2 (continued) 

No. Definite integral 

14 F(a + b + c + d - 3) 1Fj(a + b + c + d - 3; c + d - 1; 2z) 
F(c + d - I)F(b + c - I)F(a + b - I)F(a + d - 1) 

f iFj(b+c- l;c+w;z)1Fj(a+ d- l;d-w;z)dw 
= I 

J_ rP (a + w)F(b - w)F(c + w)F(d - w) 

3 < Re(a + b + c + d), 1 < Re(b + c), 1 < Re(a + d). 

F(p + q + 1) k? Fk K -A - B, { p + q + ilk; Zk /akj 
F(p + q{p+q-cx+kilkk 

15 {P + q 
- a +I 1 k 

15 (p + q -a + )F(a + I)F(p + ?1)(q + 1) 

F-A, {p + Ilk; 
-Z/az 

] F B, { q + l k; _Z /ala 
k?+lFk 

k 
k?+lFk 'dw 

{p P a + 7 + w + Ilk L {q - + W - I k 

J_ F(a-y-w+ 1)F(w+y+ I)F(p-a+y+w+ 1)F(q-y-w+ 1) ,* 

-1 < Re(p), -1 < Re(q), -1 < Re(p + q), k = 1, 2, 3, 
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